Thursday, November 15, 2018

Ekstraksi Ciri Computer Vision

Ekstraksi ciri citra merupakan tahapan mengekstrak ciri/informasi dari objek di dalam citra yang ingin dikenali/dibedakan dengan objek lainnya.

Ciri yang telah diekstrak kemudian digunakan sebagai parameter/nilai masukan untuk membedakan antara objek satu dengan lainnya pada tahapan identifikasi/ klasifikasi.
Ciri yang umumnya diekstrak antara lain:
  • Ekstraksi Ciri Bentuk
  • Ekstraksi Ciri Ukuran
  • Ekstraksi Ciri Geometri
  • Ekstraksi Ciri Tekstur
  • Ekstraksi Ciri Warna

1. Ekstraksi Ciri Bentuk
Untuk membedakan bentuk objek satu dengan objek lainnya, dapat menggunakan parameter yang disebut dengan ‘eccentricity’. Eccentricity merupakan nilai perbandingan antara jarak foci ellips minor dengan foci ellips mayor suatu objek. Eccentricity memiliki rentang nilai antara 0 hingga 1. Objek yang berbentuk memanjang/mendekati bentuk garis lurus, nilai eccentricitynya mendekati angka 1, sedangkan objek yang berbentuk bulat/lingkaran, nilai eccentricitynya mendekati angka 0. Penghitungan eccentricity diilustrasikan pada gambar di bawah ini:

Parameter lainnya yang dapat digunakan untuk membedakan bentuk suatu objek yaitu ‘metric’. Metric merupakan nilai perbandingan antara luas  dan keliling objek. Metric memiliki rentang nilai antara 0 hingga 1. Objek yang berbentuk memanjang/mendekati bentuk garis lurus, nilai metricnya mendekati angka 0, sedangkan objek yang berbentuk bulat/lingkaran, nilai metricnya mendekati angka 1. Penghitungan metric diilustrasikan pada gambar di bawah ini:


2. Ekstraksi Ciri Ukuran
Untuk membedakan ukuran objek satu dengan objek lainnya dapat menggunakan parameter luas dan keliling. Luas merupakan banyaknya piksel yang menyusun suatu objek. Sedangkan keliling merupakan banyaknya piksel yang mengelilingi suatu objek. 


3. Ekstraksi Ciri Geometri
Ciri geometri merupakan ciri yang didasarkan pada hubungan antara dua buah titik, garis, atau bidang dalam citra digital. Ciri geometri di antaranya adalah jarak dan sudut. Jarak antara dua buah titik (dengan satuan piksel) dapat ditentukan menggunakan persamaan euclidean, minkowski, manhattan, dll. Jarak dengan satuan piksel tersebut dapat dikonversi menjadi satuan panjang seperti milimeter, centimeter, meter, dll dengan cara membaginya dengan resolusi spasial. Sedangkan sudut antara dua buah garis dapat ditentukan dengan perhitungan trigonometri maupun dengan analisis vektor.


4. Ekstraksi Ciri Tekstur
Untuk membedakan tekstur objek satu dengan objek lainnya dapat menggunakan ciri statistik orde pertama atau ciri statistik orde dua. Ciri orde pertama didasarkan pada karakteristik histogram citra. Ciri orde pertama umumnya digunakan untuk membedakan tekstur makrostruktur (perulangan pola lokal secara periodik). Ciri orde pertama antara lain: mean, variance, skewness, kurtosis, dan entropy. Sedangkan ciri orde dua didasarkan pada probabilitas hubungan ketetanggaan antara dua piksel pada jarak dan orientasi sudut tertentu. Ciri orde dua umumnya digunakan untuk membedakan tekstur mikrostruktur (pola lokal dan perulangan tidak begitu jelas). Ciri orde dua antara lain: Angular Second MomentContrast, Correlation, Variance, Inverse Different Moment, dan Entropy. Analisis tekstur juga dapat dilakukan dalam domain frekuensi antara lain menggunakan filter bank gabor.


5. Ekstraksi Ciri Warna
Untuk membedakan suatu objek dengan warna tertentu dapat menggunakan nilai hue yang merupakan representasi dari cahaya tampak (merah, jingga, kuning, hijau, biru, ungu). Nilai hue dapat dikombinasikan dengan nilai saturation dan value yang merupakan tingkat kecerahan suatu warna. Untuk mendapatkan ketiga nilai tersebut, perlu dilakukan konversi ruang warna citra yang semula RGB (Red, Green, Blue) menjadi HSV (Hue, Saturation, Value)

Ekstraksi ciri citra merupakan tahapan penting dalam bidang computer vision (pengolahan citra dan pengenalan pola).
Beberapa hal yang perlu diperhatikan dalam memilih ciri yang tepat yang akan digunakan sebagai masukan pada tahapan klasifikasi citra antara lain:
1. Secara visual (penglihatan manusia), ciri apakah yang membedakan antara kelas satu dengan kelas lainnya?
2. Domain apakah yang akan kita gunakan untuk mengekstrak ciri tersebut? (domain spasial atau domain frekuensi?)
3. Parameter apa sajakah yang akan dipilih untuk mewakili ciri tersebut?
4. Berapa jumlah parameter yang akan kita gunakan?
5. Ciri lain apakah yang memungkinkan untuk kita kombinasikan?


0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home